Telescopes

Artist's illustration of TRAPPIST-1 and its planets (Image NASA/JPL-Caltech)

An article published in the magazine “Astrophysical Journal Letters” describes a research on the orbits of the TRAPPIST-1 system’s planets. NASA’s announcement of the detection of 7 planets in that system of which at least three in the habitable zone raised enthusiasm but the data collected seemed to indicate an instability in those planets’ orbits. A team led by Dan Tamayo of the University of Toronto offers an explanation based on a series of orbital resonances that keep the system stable.

Artist's concept of HAT-P-26b observed by Hubble and Spitzer (Image NASA/GSFC)

An article published in the journal “Science” describes a research on the exoplanet HAT-P-26b, a warm Neptune, meaning a planet of size similar to Neptune that orbits near its star HAT-P-26. A team of researchers from NASA’s Goddard Space Flight Center and the British University of Exeter used the Hubble and Spitzer space telescopes to discover what is called a primitive atmosphere for HAT-P-26b despite its star being old.

A comparison between supermassive black holes in a normal galaxy and in one involved in a galaxy merger (Image National Astronomical Observatory of Japan)

An article published in the journal “Monthly Notices of the Royal Astronomical Society” describes the effects that a merger between two galaxies can have on a supermassive black hole at the center of a galaxy involved in that process. A team of researchers led by Claudio Ricci used especially NASA’s NuSTAR space telescope to study how in the last stages of galactic merger gas and dust fall towards a black hole enshrouding it and generating an active galactic nucleus.

X-ray image of the hot gas in the Perseus galaxy cluster (Image NASA's Goddard Space Flight Center/Stephen Walker et al.)

An article published in the journal “Monthly Notices of the Royal Astronomical Society” describes the discovery of a large wave of hot gas in the Perseus galaxy cluster that extends for about 200,000 light years. A team of astronomers led by Dr. Stephen Walker of NASA’s Goddard Space Flight Center combined observations with NASA’s Chandra X-ray Observatory and others at radio frequencies with computer simulations to study it.