Super Heavy Booster 13 and Starship 31 blasting off (Image courtesy SpaceX)

It was the afternoon in the USA when SpaceX conducted a new flight test of its Super Heavy rocket and Starship prototypes, launched from its base in Boca Chica, Texas. This is the sixth test involving the entire system of Elon Musk’s company which is supposed to revolutionize space travel with an unprecedented transport capacity and being totally reusable. They are advanced prototypes with the Super Heavy identified as Booster 13 and the Starship identified as Starship 31 or Ship31 or simply S31.

The ultramassive galaxies S1, S2, and S3

An article published in the journal “Nature” reports the discovery of three ultramassive galaxies in the early universe in which stars are forming with an efficiency almost twice that of galaxies of average mass by the standards of that era. A team of researchers coordinated by the University of Geneva (UNIGE) used observations conducted with the James Webb space telescope within the FRESCO program. The three galaxies (Image NASA/CSA/ESA, M. Xiao & P. ​​A. Oesch (University of Geneva), G. Brammer (Niels Bohr Institute), Dawn JWST Archive), which were cataloged as S1, S2, and S3, are almost as massive as the Milky Way and add to others that were discovered in recent years and are difficult to explain with the most accepted cosmological models, starting with lambda-CDM.

Protogalaxies as seen by the James Webb Space Telescope (Image NASA)

An article published in “The Astrophysical Journal” reports some predictions offered by MOND (Modified Newtonian Dynamics), a theory based on modifications to Newton and Einstein’s gravitational laws that doesn’t include the existence of dark matter. Stacy S. McGaugh, James M. Schombert, Federico Lelli, and Jay Franck have applied this model to primordial galaxies studied with the James Webb Space Telescope obtaining a better agreement than the lambda-CDM model, the best cosmological model based on the existence of dark matter. This is one of the studies, often based on Webb’s observations, that are testing cosmological models that weren’t considered very much due to the lack of confirmation.

Artist's concept of a primordial dwarf galaxy with a fast growing supermassive black hole (Image NOIRLab/NSF/AURA/J. da Silva/M. Zamani)

An article published in the journal “Nature Astronomy” reports the results of the study of the dwarf galaxy cataloged as LID-568, which has at its center a supermassive black hole that is devouring materials at a rate that is more than 40 times faster than its theoretical limits. A team of researchers led by astronomer Hyewon Suh of the International Gemini Observatory/NSF NOIRLab combined observations conducted with the Chandra and James Webb space telescopes to obtain precise data on this voracious supermassive black hole. We see it as it was about 1.5 billion years after the Big Bang and its discovery indicates a way in which these very extreme objects manage to grow so quickly.